Thursday, April 10, 2008

Applications

Cancer
The small size of nanoparticles endows them with properties that can be very useful in oncology, particularly in imaging. Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. These nanoparticles are much brighter than organic dyes and only need one light source for excitation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today's organic dyes. Another nanoproperty, high surface area to volume ratio, allows many functional groups to be attached to a nanoparticle, which can seek out and bind to certain tumor cells. Additionally, the small size of nanoparticles (10 to 100 nanometers), allows them to preferentially accumulate at tumor sites (because tumors lack an effective lymphatic drainage system). A very exciting research question is how to make these imaging nanoparticles do more things for cancer. For instance, is it possible to manufacture multifunctional nanoparticles that would detect, image, and then proceed to treat a tumor? This question is currently under vigorous investigation; the answer to which could shape the future of cancer treatment.

Other
Although there has been much hype about the potential applications of nanotechnology, most current commercialized applications are limited to the use of "first generation" passive nanomaterials. These include titanium dioxide nanoparticles in sunscreen, cosmetics and some food products; silver nanoparticles in food packaging, clothing, disinfectants and household appliances; zinc oxide nanoparticles in sunscreens and cosmetics, surface coatings, paints and outdoor furniture varnishes; and cerium oxide nanoparticles as a fuel catalyst. The Woodrow Wilson Center for International Scholars' Project on Emerging Nanotechnologies hosts an online inventory of consumer products which now contain nanomaterials.
However further applications which require actual manipulation or arrangement of nanoscale components await further research. Though technologies currently branded with the term 'nano' are sometimes little related to and fall far short of the most ambitious and transformative technological goals of the sort in molecular manufacturing proposals, the term still connotes such ideas. Thus there may be a danger that a "nano bubble" will form, or is forming already, from the use of the term by scientists and entrepreneurs to garner funding, regardless of interest in the transformative possibilities of more ambitious and far-sighted work.
The National Science Foundation (a major source of funding for nanotechnology in the United States) funded researcher David Berube to study the field of nanotechnology. His findings are published in the monograph “Nano-Hype: The Truth Behind the Nanotechnology Buzz". This published study (with a foreword by Mihail Roco, Senior Advisor for Nanotechnology at the National Science Foundation) concludes that much of what is sold as “nanotechnology” is in fact a recasting of straightforward materials science, which is leading to a “nanotech industry built solely on selling nanotubes, nanowires, and the like” which will “end up with a few suppliers selling low margin products in huge volumes."
Another large and beneficial outcome of nanotechnology is the production of potable water through the means of nanofiltration. Where much of the developing world lacks access to reliable water sources, nanotechnology may alleviate these issues upon further testing as have been performed in countries, such as South Africa. It is important that solute levels in water sources are maintained and reached to provide necessary nutrients to people. And in turn, further testing would be pertinent so as to measure for any signs of nanotoxicology and any negative affects to any and all biological creatures.
In 1999, the ultimate CMOS transistor developed at the Laboratory for Economics and Information Technology in Grenoble, France, tested the limits of the principles of the MOSFET transistor with a diameter of 18 nm (approximately 70 atoms placed side by side). This was almost 10 times smaller than the smallest industrial transistor in 2003 (130 nm in 2003, 90 nm in 2004 and 65 nm in 2005). It enabled the theoretical integration of seven billion junctions on a €1 coin. However, the CMOS transistor, which was created in 1999, was not a simple research experiment to study how CMOS technology functions, but rather a demonstration of how this technology functions now that we ourselves are getting ever closer to working on a molecular scale. Today it would be impossible to master the coordinated assembly of a large number of these transistors on a circuit and it would also be impossible to create this on an industrial level.

No comments: